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Abstract 

Associated to any simplicial complex A on n vertices is a square-free monomial ideal I.1 in 
the polynomial ring A = k[x~, ,x,1, and its quotient k[A] = A/IA known as the Stanley-Reisner 
ring. This note considers a simplicial complex A* which is in a sense a canonical Alexander 

dual to A, previously considered in [I, 51. Using Alexander duality and a result of Hochster 
computing the Betti numbers dimkTor,A(k[d],k), it is shown (Proposition 1) that these Betti 
numbers are computable from the homology of links of faces in A*. As corollaries, we prove 
that 1~ has a linear resolution as A-module if and only if A* is Cohen-Macaulay over k. and 
show how to compute the Betti numbers dimkTort(k[A],k) in some cases where A* is well- 
behaved (shellable, Cohen-Macaulay, or Buchsbaum). Some other applications of the notion of 
shellability are also discussed. @ 1998 Elsevier Science B.V. All rights reserved. 

AMS Cluss$cation: 18GlO; 13Cl4; 13HlO 

1. Introduction 

Let A be an abstract simplicial complex on vertex set [n] := { 1,2,3,. . . , n}, i.e. A 

is a collection of subsets F C [n] called f&es which is closed under inclusion. The 

&zension dim(F) of the face F is IFI - 1, and dim(d) is the maximum dimension of 

its faces. We say that A is pure if all maximal faces of d have the same dimension, 

equal to dim(d). 

There is a well-known construction (see [14, Ch. 21) of the Stanley-Reisnrr ring 

k[d] associated to A: one forms a certain square-free monomial ideal 1~ in the poly- 

nomial ring A := k[xl, . .,x,,], and then k[d] is the quotient ring A/Id. The ideal Id is 

generated by the monomials xG as G runs over the inclusion-minimal subsets of [n] 

which are not faces in A, where xG := niEGx;. 
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Every square-free monomial ideal I in A is of the form Zd for some simplicial 

complex A, and A plays a role in understanding the homological properties of 1. 

Conversely, the rings k[A] have played a role in understanding combinatorial properties 

of simplicial complexes, and in particular the enumeration of their faces of various 

dimensions (see [14]). 

One homological property of interest for k[A] are the Betti numbers 

j,(k[A]) :=dimkTorj’(k[A],k), 

where k is given the trivial A-module structure as the quotient A/A+ by the irrelevant 

ideal A+ =(x1,x2,. . ,x,). The Betti numbers pi := fli(k[A]) are of particular interest 

because they give the ranks of the ith resolvent in a minima1 free resolution of k[A] 

as an A-module: 

0 + ABn + . . +A~‘I+A+k[A]+O, 

Since the monomial ideal 1~ is homogeneous with respect to the Ni”-grading on A 

defined by letting the variable xi have grade equal to the ith standard basis vector ei, 

the Stanley-Reisner ring k[A] inherits this grading. The resolvents Afii may also be 

given this W-grading so as to make the maps in the resolution homogeneous, and hence 

Tort(k[A], k) inherits this grading. For a given grade a E N”, let Torf(k[A],k), denote 

the u-graded component of Tort(k[A], k). One can then collate this finer information 

about the dimensions of these graded pieces into the Betti polynomial 

‘/(k[A],t) := c dimkTor”(k[A], k), P, 
a 

where ta = ni t[?. Hochster gave the following formula for these Betti polynomials. 

Theorem (Hochster [ 121). 

T,(k[Al,f)= c dimk~jvl-,-l(Av;k)tv, 
v c [nl 

where Av denotes the simplicial complex on vertex set V dejned by 

AV:={V’cV:V’~A}. 

Here f?(.; k) denotes reduced homology with coeficients in the field k, and t” := 

IYli, V tl’ 

See [6, 7, 15-191 for some applications of Hochster’s formula. 

Our observation is that one may reinterpret the reduced homologies in Hochster’s 

formula as the reduced (co-)homologies of links of faces in a certain simplicial complex 

A* dual to A, defined by 

A*:={FC[n]: [n]-Fed}. 

In other words, if one thinks of A as an order ideal in the Boolean algebra 2[“], then 

A* is obtained by taking the order ,filter 2 Lnl - A, and applying the order-reversing 
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map F H [n] - F to each of these sets yielding another order ideal A*. This same 

construction plays an important role in [5, Section 11. 

Recall that the link of a face F in a simplical complex A on vertex set [n] is the 

simplicial complex on vertex set [n] - F defined by 

link,F:={GEA: GUFE A,GnF=0}. 

We shall also need later the deletion of vertex u in a simplicial complex, defined by 

deldv:={GEA: o@G} 

Proposition 1. For i > 1 \ve huue 

7’;(k[A], t) = c dimkZ?_2(linkd*F; k) t[“leF 

FE/l’ 

Proof. Given V C [n] appearing as a term in Hochster’s sum, let F = [n] - V. Note that 

if V is a face of A then AV will be a simplex and hence have no reduced homology, 

therefore we may assume V is not a face of A. By definition of A* then F is a face 

of A*, so F appears in the sum on the right-hand side in the Proposition 1. Therefore 

it suffices to show 

To see this, note that the complementation map 

{V’ C [n]: V’ C V} ---f {F’ C: [n]: F C F’) 

given by V’ H [n] - F’ identifies the Boolean algebra 2’ with the interval [F, [n]] in 

the Boolean algebra 2[“], and has the property that V’ is a face of A if and only if 

F’ = [n] - V’ is not a face of A*. Thus this map gives an isomorphism between the 

complexes linkA* F and (A”)* if we think of both as having vertex set V. It only 

remains to apply the following lemma, and use the duality between reduced homology 

and cohomology over a field k [13, Theorem 53.51: 

Lemma 2 (see [5, Lemma 1.2; 9, Lemma 4; 1, Theorem 6.4.11). For any simpliciul 

complex A on vertex set [n], we haue 

fT_l(A*;k) Z fY”p”(A;k). 

This concludes the proof of the proposition. 0 

We conclude this section with various remarks on Proposition 1. 

Remark. The use of Alexander duality in connection with Hochster’s formula is 

not new, although previously it has been most often used to relate fi*( AL); k) and 

fij*(AL,]_v; k) in the case where A is a k-homology sphere (e.g. [14, p. 76; l&19]). 
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However, we found out that recently many others [ 1, 5, 151, have independently used 

this same Alexander duality to show, among other things, that the second Betti number 

/$(k[d]) depends only on A and not on the field k (as is clear from Proposition 1). 

In fact, the discussion in [5, p. 4 paragraph preceding Corollary 1.5] is almost the 

same as the assertion of Proposition 1, although the subcomplexes linkA. F which 

appear there implicitly are never identified as links. 

Remark. We were led to this reformulation of Hochster’s result by the results of [8], 

which give a procedure to construct the maps in a minimal free resolution of k[A], in 

the case where A* is pure. In that paper, there is given more generally a procedure to 

construct maps in a minimal free resolution for all quotients of a polynomial ring by 

an ideal generated by monomials which all have the same degree. 

2. Applications 

Hochster’s formula is clearly most useful when the homology of A and all of its sub- 

complexes AV are comprehensible, a situation which is rare unless A is low-dimensional 

(although see [ 10, 17, 191 for some notable exceptions). On the other hand, the use- 

fulness of Proposition 1 lies in situations where one has information about the links 

of faces in A*, and there are several well-known hypotheses on a simplicial complex 

which state such information. We recall here the definitions for a simplicial complex 

to be Cohen-Macaulay, Buchsbaum, Gorenstein*, or a homology manifold over k, 

and refer the reader to [14] for equivalent definitions in terms of properties of the 

Stanley-Reisner ring k[A]. 

The simplicial complex A is said to be Buchsbaum over the field k if it is pure, and 

for every non-empty face F of A, we have fii(linkdF; k) = 0 for i <dim(link4F). 

If in addition to A being Buchsbaum over k one has that pi( A; k) = 0 for i <dim(A) 

then A is said to be Cohen-Macaulay over k. 

If in addition to A being Cohen-Macaulay over k one has that 

fidim(mAF)(linW’; k) = k 

for every face F, then A is said to be a homology sphere over k or Gorenstein” over k. 

If in addition to A being Buchsbaum over k one has that 

fidim(linknF)(li&F; k) = k 

for every non-empty face F, then A is said to be a homology manifold over k. 

Examples. It is known [13, Section 631 that simplicial complexes A which triangu- 

late a manifold without boundary are homology manifolds over any field k, and if A 

triangulates a sphere then it is a homology sphere over any field k. 

All graphs (i.e. l-dimensional simplicial complexes) are Buchsbaum over arbitrary 

fields k, and are furthermore Cohen-Macaulay when connected. 
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We say that an ideal I in A has linear resolution if there is a minimal free resolution 

for A/I in which all the non-zero entries in the matrices ai : API + ADI-] for i 2 2 are 

of degree 1 in the standard grading on A where deg(xi) = 1. Friiberg [9] gave a char- 

acterization of the ideals I generated by monomials which have linear resolution, by 

first reducing to the case of square-free monomial ideals IA, and then using Hochster’s 

formula. Using Proposition 1 we obtain an elegant dual formulation of this result. 

Theorem 3. Id has linear resolution if and only if A* is Cohen-Macaulay over k. 

Proof. It is easy to see that Id has linear resolution if and only if 

l its minimal generators all have the same degree t, and 

l for each i we have that Tor,h(k[A], k) is homogeneous of degree t +i in the standard 

grading 

(in fact, this is the definition of having t-linear resolution used in [9]). The first of these 

conditions is equivalent to A* being pure. Using Proposition 1, the second condition is 

equivalent to linkd*F having no homology over k except in its top dimension for all 

faces F of A*. Thus these two conditions are exactly equivalent to A* being Cohen- 

Macaulay over k. 0 

Remark. Theorem 3 explains some of the “bad” behavior of resolutions of k[A] with 

respect to the topology of A, as discussed in [9]. In [9, Remark 91 it is noted that 

having linear resolution is not a topological invariant of A. However, it is a topological 

invariant of A*. Also, [9, Example 31 points out that when A is the well-known 6-point 

triangulation of [wP2, the resolution is linear when k has characteristic 0 but not when 

it has characteristic 2. This is because in this case A* is isomorphic to A, and hence 

triangulates [wP2 which is Cohen-Macaulay over k exactly when k has characteristic 

not equal to 2. 

In the case where A* is at least Buchsbaum, Proposition 1 gives an easy computation 

of the Betti numbers b(k[A]), in terms of the number of faces of various dimensions 

and (topological) Betti numbers of A*. Recall (see [14, Appendix 2]), the definition 

of the f-vector of a (d - I)-dimensional simplicial complex 

f(A):=(f-~,fo,fi,...,fd-1) 

where f; is the number of i-dimensional faces of A. Also recall that the same infor- 

mation may be encoded in the h-vector defined by 

h(A):=(ho,hi,...,hd), & fi-,(t - l)d-’ = 2 h;td-‘. 

i=O i=O 

Also define the (reduced) PoincarP polynomial Poin(A, t) by 

Poin( A, t) = c dimkfii( A; k)t’ 

i>-1 

(1) 

and the (reduced) Euler characteristic f(A) = Poin( A, - 1). 
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Theorem 4. Let A be a simplicial complex, and A* its Alexander dual as dejined 

earlier, with dim( A* ) = d - 1. 

a If A” is Buchsbaum, then 

~~i(k[A])t’-‘~tPoin(A*,t)+(-t)d~(A*)+~h~(A*)(t+ I)‘. 

i>l i=O 

(2) 

l If A* is Cohen-Macaulay, then Eq. (2) collapses to 

Cpi(k[A])t” = kh,(o*)(t+ 1)‘. 

i>l 1=0 

l If A* is a homology manifold over k, then 

d-l 

CPi(k[A])t’-‘=tPoin(A*,t) + C fd-i-l(A*)ti. 

i>l 1=0 

l If A* is a homology sphere (Covenstein*) over k, then 

CBi(k[A])t’-‘= & fd_i_l(A*)t’. 

i>l i=O 

Proof. To prove Eq. (2), assume A* is Buchsbaum, and use Proposition 1 to conclude 

that 

C ji(k[A]) t’-’ = C c dimk~j(link4*F)t’+’ 
i>l FtA’ I 

=c - dimkH/(A*)t j+’ + c ~dim~&(linkA*F)tj+’ 

.i O#FEA_ i 

= tPoin(A*,t) + C (-l)d-dimcF’~(linkA*F)td-/Fl. (3) 
fi#FEA’ 

Combining equations from [14, Sections II.7 and II.21 gives the equation 

If we replace t by l/( 1 + t) and then multiply by td, we obtain 

C(-l) - d d’“‘(F)~(linkA,F) t”-l”l = & hi(A* )(l + t)’ 

FEA* r=O 

which combined with the last equation in (3) yields Eq. (2). 
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The formula in the case A* is Cohen-Macaulay follows from Eq. (2) upon observing 

that 

since A* has only top dimensional reduced homology. 

The formula in the case of A* is a homology manifold over k, follows directly from 

Eq. (3) and the definition of the f-vector, using the fact that 

(_ 1 )d-dim(F) f(linkd.F)= 1 

for all non-empty faces F. The case where A* is a homology sphere over k is then a 

trivial specialization of this. 0 

Remark. Note that the definition of A* gives an obvious relation between the f-vectors 

of A and A*, namely 

fitA*)= i 1 1 - fn-i-z(A), 
( > 

Similarly, Lemma 2 gives a simple relation between the topological Poincare polyno- 

mials of A and A*. Therefore one has a choice in the previous theorem to express the 

formulas in terms of the f-vector and Poincare polynomial of A*, or in terms of A 

itself. 

The next result provides a large class of examples where the Betti numbers of k[A] 

do not depend upon the field (see [15-191 other such results). It is pointed out in 

[16, Section 31 that this is equivalent to the existence of a minimal free resolution of 

Z[A] over Z[xl,. . .,x,1. 

The field independence comes from the condition of shellability [3, 41. Say that a 

simplicial complex A is shellable if one can order its maximal faces F1, F2,. . . , F,,, in 

such a way that for each i )2 the intersection 

(4) 

between F; and the subcomplex generated by the previous maximal faces is a subcom- 

plex of codimension 1 inside Fi. When A is shellable and pure of dimension d - I, 

the h-vector has the following interpretation: h, is the number of maximal faces F, for 

which the intersection in (4) consists of exactly d - r of the (d - 2)-faces of F,. 

Corollary 5. If A* is shellable then the Betti numbers pi of k[A] are independent of 

the field k. If furthermore A* is pure and shellable, then regardless of the ,jield k HYJ 

have that the resolution of I, is linear and 

C fii(k[A]) t” = C hi(A*)(t + 1)‘. 
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Proof. When A* is shellable, its homology is independent of the field [3, 

Corollary 4.21, and all of its links link4,F inherit the property of shellability [4, Propo- 

sition 10.141 so their homology is also independent of the field. The first assertion of 

the theorem then follows from Proposition 1. 

Since A* being pure and shellable implies it is Cohen-Macaulay over any field (see 

e.g. [3, 4, Corollary 4.1, Proposition 10.141) the rest of the assertions follow from 

Theorems 3 and 4. 0 

Directly translating the definition of pure shellability of A* produces the following 

condition on the generators of the monomial ideal I =Z4: one can linearly order the 

monomial generators m 1, m2,. . . , m, of I in such a way that for each i< k there exists 

a j <k satisfying 

l mj divides the least common multiple lcm(mi,mk), 

l mj,mk differ in at exactly 2 variables, i.e. mj =(x,/x,)rnk for some p,q. 

It follows immediately from the preceding corollary that any square-free monomial ideal 

satisfying this condition will have a linear resolution regardless of the field k. On the 

other hand, this same definition also makes sense for monomial ideals I which are not 

necessarily square-free. Say that such a monomial ideal (not necessarily square-free) 

is dually shellable. 

Theorem 6. Let I be a dually shellable monomial ideal in k[xl,. . . ,x,1. Then I has 

linear resolution regardless of the field k. 

Proof. Assume I is dually shellable, with linear order ml, m2,. . . , m, on its monomial 

generators as in the definition. If all the monomials m, are square-free, then we are 

done by the previous corollary. Otherwise there is some variable, say x, for which the 

maximum x-degree appearing among all the mi’s is d > 1. In this case we introduce a 

new ideal I’ which is “closer” to being square-free, by defining ml to be 

?jmi if xd divides mi, 
i?li= 

mi otherwise, 

and letting I’ be the ideal generated by rni, mi,. . . , m:. Since A/I is the quotient of 

A[x,~]/l’ by the linear non-zero divisor x0 -x, it follows from [9, Lemma 1] that I will 

have linear resolution if and only if I’ does. 

Therefore it suffices (by induction on d) to show that I’ inherits dual shellability 

from I, with respect to the ordering rni, m&. . . , rn: of its generators. So let i < k, and 

let j< k be the index satisfing mj divides lcm(mj,mk) with mj,mk differing in exactly 

2 variables. We claim both that rn; will divide lcm(mj,mL) and that rn$rnb differ in 

exactly 2 variables. To see the first claim, note that the power of any variable xt other 

than x or x0 is the same in m:, mj, rn: as it was in mi, mj, mk, so we only need to check 

that the x-degree and x0-degree of rn$ are no bigger than their minimum values for 

m:, rn;. This is true for the no-degrees because rn$ has a factor of x0 exactly when xd 

divides mj, which implies that xd divides at least one of the two monomials Itzi,mj, 
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and so one of m:,rnk will be divisible by x0. Similar reasoning shows that it is true for 

the x-degrees. To show the second claim about rn;,rni differing in exactly 2 variables, 

consider the four cases 

l m,~=m,,m;=mk. Trivial. 

l rnj # mj, rn: fmk. Here it must be that mj,mk were both divisible by xd, so we must 

have mi=(xp/xq)mk for two variables xp,xq#x. But then m~=(x,,/xq)m~. 

l rn,) = mj, rn; #ml,. In this case it must be that mk is divisible by xd while m, is not, 

so rni =(x,/x)mk for some variable xp. But then 

XP Xp X0 XP I m)=mj=-_mk=---_mk=--_mk 

X X0 X X0 

as desired. 

l mj#m,,m b =mk. Symmetric to the previous case. 

This completes the proof of the claim, and hence the theorem follows. 0 

The remainder of this section discusses two situations where the conclusion of Corol- 

lary 5 applies because the dual complex A * is not only shellable, but satisfies the 

stronger condition of vertex-decomposability. A simplicial complex A is said to be 

vertex-decomposable if it satisfies the following recursive definition: either A = {a} or 

there exists some vertex v of A for which both subcomplexes deldv and linkdv are 

vertex-decomposable. This concept was introduced by Provan and Billera, who showed 

that vertex-decomposable complexes are shellable (see [2, Lemma 4.141). 

Say that Id is matroidal if its set of minimal generators {xGe} satisfy the MaeLane+ 

Steinitz exchange axiom: For any c[, 8, i, if xi divides xG1 then there exists a j such that 

x, divides xc@ and (xj/‘xi)Ga is also a minimal generator. Equivalently, Id is matroidal 

if the set of exponents .?8 := {G,} of its minimal generators form the set of bases for 

a matroid .M on the ground set [n] (see [2]). 

Proposition 7. IfId is matroidal, then A* is vertex-decomposable, and hence shellable. 

Therefore 1~ has linear resolution over any field k. 

Proof. In this situation, A* will be the dual complex for the matroid JZ, i.e. the 

complex of independent sets in the dual matroid J&Z!*. As a consequence it is vertex- 

decomposable (see [2, Section 51). 0 

Note that [9, Example 41 is an instance of a matroidal ideal IA, in which J2 is the 

uniform matroid of rank kf 1 on ground set [n]. We also remark that the hypotheses in 

the previous proposition may be weakened somewhat to assume only that the generators 

of 1, correspond to the set of bases in a greedoid 3 on the ground set [n] (see [2] 

for definitions). In this situation A* again forms the dual complex of 9, which is 

known to be vertex-decomposable [2, Theorem 5.11. Unfortunately we are not aware 

of any simple characterization for when a family of subsets g form the bases of some 

greedoid (and there may be many such greedoids), so it is not easy to check these 

weaker hypotheses. 
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Lastly we re-interpret a result of Frijberg [lo] which characterizes the ideals 1~ 

generated by quadratic square-free monomials having linear resolutions. Note that ZA 

is generated by quadratic square-free monomials exactly when A is the flag complex 

A(G) associated to some graph G on the vertex set [n], i.e. the simplices of d(G) 

are exactly the subsets F of [n] for which every pair in F is an edge of G. Froberg’s 

characterization involves chordal graphs, which we now discuss. Say that a graph G 

is chordal if for every cycle UI, 212,. . , v,, , m, v VI in G with m 24, there exists some 

chord i.e. an edge in G between two vertices which are not adjacent in the cycle. It is 

well-known (see [l 11) that chordal graphs may also be characterized by the existence 

of an elimination ordering ~1, ~2,. . . , v, on the vertices, meaning that for all i there are 

edges between all pairs of Q’S neighbors in G - { ui, ~2,. . , tI_ I} (vi is said to be a 

simplicial vertex of G - vi, ~2,. . . , Ui-1) in this situation). 

Theorem (Froberg [lo, Theorem 11). A Stanley-Reisner ideal Id generated by quad- 

ratics has linear resolution if and only if A = A( G) for some chordal graph G. 

In light of Theorem 3 and Corollary 5, the following proposition gives a “dual” 

explanation of this result: 

Proposition 8. The following are equivalent for a graph G: 

(i) A(G)* is vertex-decomposable. 

(ii) A(G)* is Cohen-Macaulay over any jield k. 

(iii) A(G)* is Cohen-Macaulay over some field k. 

(iv) G is chordal. 

Proof. The implications (i)+ (ii)+(iii) are all trivial. 

(iii)+(iv): If G is not chordal then there exist some subset V of the vertices which 

supports a cycle in G having no chord. Borrowing from the argument of [lo], note 

that d(G)v is homeomorphic to a circle. Lemma 2 then implies that 

fi~v+4(link~(G)*F;k) = fi~(A(Gb;k>#O 

so that A(G)* is not Cohen-Macaulay over any field k. 

(iv) =+ (i): If G is chordal, let VI, VZ,. . . , v, be an elimination ordering for its vertices. 

A vertex decomposition for A(G)* starting with vi will then follow from the following 

lemma, whose proof is straightforward. 

Lemma 9. 1. For any vertex v in a graph G, we have linkd(o). v= (A(G - u))* as 

complexes on the vertex set [n] - {v}. 

2. For any simplicial vertex v in a graph G, the deletion deld(c;,-v is the simplicial 

complex on vertex set [n] - {v} having maximal faces {[n] - {v, v’}} as v’ runs over 

all non-neighbors of v in G. 
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We must show that the lemma implies both subcomplexes linkdrc;,. cl and 

delncoj- VI are vertex decomposable. By induction and part 1 of the lemma we have that 

linkd(oi,* VI = (A(G - vi))* is vertex-decomposable, since G - C’I is chordal whenever 

G is chordal. By part 2 of the lemma, since ut is simplicial, deld(o)-ut is the complex 

generated by a collection of codimension 1 faces of a simplex, and all such complexes 

are easily seen to be vertex-decomposable. 0 
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